CAR-T cells and bispecific antibodies: mechansisms of action and toxicities

> Prof.ssa Chiara Bonini Experimental Haematology Lab San Raffaele Scientific Institute - Milano

Mechanisms of Action of Bispecific Antibodies

	BLINATUMOMAB	MOSUNETUZUMAB	EPCORITAMAB	GLOFITAMAB	ODRONEXTAMAB
TARGET	CD3xCD19	CD3xCD20	CD3xCD20	CD3x(CD20) ₂	CD3xCD20
DESIGN	CDADA				
	 Monovalent CD3 and monovalent CD19 binding Two murine scFv-joined by a glycine-serine linker 	 Monovalent CD3 and monovalent CD20 binding Humanized mouse IgG1-based antibody 	 Monovalent CD3 and monovalent CD20 binding Humanized mouse lgG1-based antibody 	 Monovalent CD3 and bivalent CD20 binding Humanized mouse lgG1-based antibody 	 Monovalent CD3 and monovalent CD20 binding Fully human IgG4-based antibody

Innovative bispecific Antibodies

Goebeler Nat Rev Clin Oncol, 2020

Innovative bispecific Antibodies

Goebeler Nat Rev Clin Oncol, 2020

Approved Bispecific Antibodies

		Approved	Bispecific An	tibodys	
Company	Trade Name	Drug Name	Targets	First Approval	Indications
Trion Pharma	Removab	Catumaxomab	CD20/EpCAM	2009 (withdrawn In 2017 ,EMA)	Malignant ascites
Amgen	Blincyto	Blinatumomab	CD3/CD19	2014 (FDA)	R/R precursor B-cell acute lymphoblastic leukemia (ALL)
Roche	Hemlibra	Emicizumab	FIXa/FX	Nov 2017 (FDA)	Bleeding due to hemophilia A
Janssen	Rybrevant	Amivantamab-vmjw	EGFR/cMet	May 2021 (FDA)	Non-small cell lung cancer
Immunocore	Kimmtrak	tebentafusp-tebn	GP100/CD3	Jan 2022 (FDA)	unresectable or metastatic uveal melanoma
Genentech	Vabysmo	Faricimab-svoa	Ang-2/VEGF-A	Jan 2022 (FDA)	Wet AMD and DME
Roche	Lunsumio	Mosunetuzumab	CD20/CD3	Jun 2022 (EMA)	R/R follicular lymphoma (FL)
Akeso	开坦尼®	Cadonilimab	PD-1/CTLA-4	Jun 2022 (NMPA)	relapsed or metastatic cervical cancer
Janssen	Tecvayli	Teclistamab	BCMA/CD3	Aug 2022 (EMA)	R/R multiple myeloma

Living Drugs

FDA News Release

FDA approval brings first gene therapy to the United States

CAR T-cell therapy approved to treat certain children and young adults with B-cell acute lymphoblastic leukemia

August 30, 2017

Approved: August 22, 2018

FDA News Release

FDA approves CAR-T cell therapy to treat adults with certain types of large B-cell lymphoma

Yescarta is the second gene therapy product approved in the U.S.

October 18, 2017

Approved: August 23, 2018

ur Mexar 4 Irnar And 1 Othen ar Mari Madd

CH June, M Sadelain. N Engl J Med 2018;379:64-73.

Chimeric antigen receptors

Eshhar Z et al, PNAS 1993

Majzner, et al Nat Med 2019

Key advantages

- Independency from MHC restriction
- Targeting of proteins, sugars, lipids
- Multiple effector mechanisms
- Living drugs (expansion, memory)

Chimeric Antigen Receptor (CAR)

CAR Generations

Generations of CAR T cells

1st generation 2nd generation 3rd generation 4th generation 5th generation

Therapy with CAR-T cells

CAR-T vs. BITEs

	Bispecific Antibodies	CAR T Cell
Production	"Off-the-shelf": No need for manufacturing time, allowing for immediate treatment of the patient	Individual manufacturing for each patient, starting with autologous lymphapheresis Approach: Allogeneic CAR T cells under development
Administration	Continuous intravenous infusion Approach: extended half-life bispecific antibodies	Punctual infusion of the product (dose is sometimes split up into several days to reduce AEs)
T cell phenotype and effector function	Binding of endogenous CD8 ⁺ and CD4 ⁺ T cells, which have a superior cytotoxic function than naïve T cells	The product is mostly composed of naïve CD8 ⁺ and CD4 ⁺ T cells; these cells have higher self-renewal, survival, and penetration in lymphoid tissues

AE: Adverse events; CAR: Chimeric antigen receptor.

Mechanism of action of CAR-T

Approved CAR-T cell therapies

FDA-Approved CAR T-Cell Therapies

Target Antigen	Targeted Disease	Patient Population
CD19	B-cell acute lymphoblastic leukemia (ALL)	Children and young adults with refractory or relapsed B-cell ALL
	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
CD19	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
	Follicular lymphoma	Adults with relapsed or refractory follicular lymphoma
CD19	Mantle cell lymphoma (MCL)	Adults with relapsed or refractory MCL
	B-cell acute lymphoblastic leukemia (ALL)	Adults with refractory or relapsed B-cell ALL
CD19	B-cell non-Hodgkin lymphoma (NHL)	Adults with relapsed or refractory B-cell NHL
всма	Multiple myeloma	Adults with relapsed or refractory multiple myeloma
ВСМА	Multiple myeloma	Adults with relapsed or refractory multiple myeloma
	Target AntigenCD19CD19CD19CD19CD19BCMABCMA	Target AntigenTargeted DiseaseCD19B-cell acute lymphoblastic leukemia (ALL)B-cell non-Hodgkin lymphoma (NHL)B-cell non-Hodgkin lymphoma (NHL)Follicular lymphomaCD19Mantle cell lymphoma (MCL)B-cell acute lymphoblastic leukemia (ALL)D19B-cell acute lymphoma (MCL)B-cell acute lymphoblastic leukemia (ALL)B-cell acute lymphoblastic leukemia (ALL)BCMAMultiple myelomaBCMAMultiple myeloma

B-cell lymphoma: around 50% of CR in relapsed/refractory patients Strong interaction between academia and industries

CAR-T cell therapy "challenges"

Antigen loss

- > Confirms the strong immune pressure exerted by CAR T cells
- > Highlights that malignant cells can find ways of evading this pressure

Mechanisms of CD19 loss/decrease

- 1. Genomic alterations Mutations impeding surface exposure
- Alternative splicing
 Exon 2 skipping impeding surface exposure
- 3. Lineage switch

Myeloid conversion with loss of B-cell markers

4. Trogocytosis

Antigen transfer to CAR-T cells that lead to post-transcriptional down-modulation in tumor cells

Orlando et al, Nat Med 2018; Sotillo et al, Cancer Discovery 2015; Grupp et al, NEJM 2013; Jacoby et al, Nature Comm 2016; Hamieh et al, Nat Med 2019

How can we overcome antigen loss?

Combinatorial targeting of multiple antigens at once

Innovative Immunotherapies Unit

• Choice of the target antigen

CAR-T cell functionality, expansion and persistence

Locke et al, NEJM 2019

Schuster, NEJM 2019

Innovative Immunotherapies Unit

Early memory CAR-T cell products

Arcangeli, Bove, Mazzanotte et al, JCI 2022

/ memory T cells

CLL

Lymphoma

1. De la composition de la com

Choice of the target antigen (antigen loss)

CAR-T cell functionality, expansion and persistence in patients

- CAR endocostimulation: presence, type and position
- CAR design: signal strength, tonic signaling, anti-CAR responses
- CAR-T cell memory differentiation status
- CAR-T cell CD4/CD8 ratio
- CAR-T cell exhaustion: expression of inhibitory/senescence markers
- Presence and frequency of CAR-Tregs
- Lymphodepleting chemotherapy
- Intrinsic T-cell defects: underlying disease and previous treatments)
- Immunosuppressive tumor microenvironment

CAR-T cell therapy "challenges"

- Damage of heathy tissues expressing the target antigen
- Relevant: tumor-specific antigens are rare
- Severity depends on how vital, accessible, widespread the tissue is
- Particularly dangerous for solid tumors

Logic gating strategies

Flugel CL et al, Nat Rev Clinical Oncol 2023

Cytokine release syndrome

- Systemic inflammatory reaction
 - fever, hypotension, hypoxia, capillary leak, coagulopathy
- Rapid onset within a few days after CAR-T cell infusion
- Reported with different CARs and tumor types
- Potentially life-threatening
- Its severity is associated with high tumor burdens

Teachey et al. Cancer Discovery 2016 Hay et al. Blood 2018

Kinetics of AEs associated with CAR T cell therapy

1. Lee DW, et al. Blood 2014; 124:188–195. 2. Yescarta SmPC (May 2019; available at www.ema.europa.eu).

CRS pathophysiology

- Initiated by CAR-T cells activation upon antigen engagement
- Which other cellular compartments are involved?
- \rightarrow Development of animal models recapitulating CRS development

Humanized model for CAR-T

Efficacy and CAR-related Toxicities

Adapted from Norelli M et al, Nat Med 2018

CRS initiating cascade

CAR-T cells release perforin to form pores, leading to the entry of granzyme B into target tumor cells, which causes the subsequent activation of GSDME and pyroptosis (programmed necrotic cell death)

Proptosis supernatants contain ATP and HMGB1 that induce macrophages to release IL-1b and IL-6, respectively

Liu Science Immunol 2020

Ronney and Sauer, Nat Med 2018

"Disorder in which the involvement of the central nervous system that follows any immune therapy that results in the activation or engagement of endogenous or infused T cells and/or other immune effector cells"

- Reported with different CARs and tumor types
- Potentially life-threatening (cerebral hemorrhage and edema)
- It is strictly related to CRS (development and severity)

Neurotoxicity pathophysiology

CRS and neurotoxicity management

- o Tocilizumab
 - Anti-IL-6R antibody Active against CRS
 - Unable to control neurotoxicity in most of patients
- Corticosteroids
 - At high-doses can be detrimental for efficacy

The search for strategies to mitigate these toxicities is extremely active

Mitigating CRS and neurotoxicity

- 1. Early intervention in patients at risk of developing severe toxicities Identification of predictive biomarkers
- 2. Cytokine inhibitors
 - IL-6, IL-1, GM-CSF, catecholamine
- 3. On/off switches

Pharmacological control over CAR T-cell activity (drugs or CAR designs)

Hematopoietic toxicity(ICATH)

On/off switches to mitigate toxicity

Short treatment with Dasatinib can rapidly and temporary switch-off CAR T-cell function

CAR constructs able to induce full T-cell activation only upon administration of a dimerizing agent

Rafiq et al, Nat Rev Clinical Oncol 2020

Allogeneic platform: pros

"Off-the-shelf" CAR products from healthy donors

- Overcome patients' T-cell defects
- Simplifying manufacturing and reducing costs
- > Making the treatment accessible to lymphopenic patients
- Speeding up drug administration (rapidly-progressing diseases)

Dimitri A, Molecular Cancer 2022; Wagner DL, Nat Rev Clinical Oncol 2021; Depil S, Nat Rev Drug Discov 2020

Allogeneic platform: cons

"Off-the-shelf" CAR products from healthy donors

Host-versus-Graft reaction, rejection (Problem: efficacy)
 Graft-versus-Host Disease, GvHD (Problem: toxicity)

The genome editing technology applied to cancer immunotherapy

The Genome Editing Technology allows to move from "simple" gene addition to genetic knock-down and gene substitution leading to substitution of biological functions in targeted cells

TCR gene EDITING: rational

Salute Shall the second s

Allogeneic platform: optimization

Exploiting gene editing approaches:

- >TCR knockout (GvHD)
- ➢ B2M knockout (*rejection*, CD8 T cells)
- >CIITA knockout (rejection, CD4 T cells)
- ≻HLA-E (rejection, NK)
- ➤CD45 (rejection, phagocytes)
- Intensifying lymphodepletion (*rejection*, alemtuzumab + CD52 ko in CAR-T)
- Using non-alloreactive effectors (*GvHD*, NK cells, invariant NKT, γδ T cells)

Diseases characterized by an aberrant inflammatory response against self-antigens that leads to tissue damage

Very heterogeneous group

In U.S. prevalence 3-7% of population

Unsatisfactory control with standard treatment

Chronic disease with recurrent flares

Immune selection
Autoreactive Tconvs

Immune tolerance **Dysfunctional Tregs**

Strategies in autoimmunity

CAR-T in autoimmunity

CAR	Dose and conditioning	Safety	Clinical outcome	Ref.
Systemic lupus erythematosus				
MB-CART19.1: mouse anti-CD19 scFv, CD8 hinge, TNFRSF19 transmembrane domain, 4-1BB co-stimulatory domain, CD3ζ activation domain	1×10 ⁶ cellskg⁻¹ CYC 1,000 mg m⁻²×1day FLU 25 mg m⁻²×3 days	No CRS or ICANS	Very rapid (~1month) and profound improvement in autoantibody levels and clinical disease activity	Mougiakako N. Eng. J. I
MB-CART19.1: mouse anti-CD19 scFv, CD8 hinge, TNFRSF19 transmembrane domain, 4-1BB co-stimulatory domain, CD3ζ activation domain	1×10 ⁶ cellskg ⁻¹ CYC 1,000 mg m ⁻² ×1 day FLU 25 mg m ⁻² ×3 days	Grade 1 CRS in 3 of 5 patients; no ICANS	Favourable safety, strong efficacy and durability of drug-free remission confirmed B cells returned in all patients after a median of 110 days	Mackensen Nat Med. 2
Anti-BCMA-CD19 compound CAR: 2-unit scFv with anti-BCMA fused to anti-CD19 by a self-cleaving P2A peptide	1.5–3×10 ⁶ cellskg⁻¹ Conditioning was used (agents not specified)	Grade 1 CRS; no ICANS	Reduced autoantibodies and prolonged disease remissions IVIG was administered monthly until B cell recovery	Yuan Y. et Ann. Rheur 2023
Systemic sclerosis				
MB-CART19.1: mouse anti-CD19 scFv, CD8 hinge, TNFRSF19 transmembrane domain, 4-1BB co-stimulatory domain, CD3ζ activation domain	1×10 ⁶ cells kg ⁻¹ CYC 500 mg m ⁻² ×1 day	Grade 1 CRS; no ICANS	Reduction in autoantibodies, reduction in fibroblast activation, and clinical stabilization or improvement	Bergmann Ann. Rheur 2023
Maura anti OD10 astu human IzO1, OU0OU0	Fullo ⁶ collake ⁻¹	Orada 1 OBS	Deduction in outcontibudion vaduation in fiburablest	
Mouse anti-CD19 scFV, human IgG1–CH2CH3 hinge, CD28 transmembrane domain, CD28 and 4-1BB co-stimulatory domains, CD3ζ activation domain	CYC 500 mg m ⁻² ×3 days FLU 30 mg m ⁻² ×3 days	no ICANS	activation in autoantibodies, reduction in fibroblast activation, and clinical improvement in skin fibrosis and lung function Prolonged CAR T cell persistence	Merkt W. e Ann. Rheur 2023

CAR-T in autoimmunity

1×10 ⁶ cellskg ⁻¹ CYC 1,000 mg m ⁻² ×1 day FLU 25 mg m ⁻² ×3 days	Grade 1 CRS; no ICANS	Positive clinical impact with disappearance of autoantibodies and dramatic resolution of myositis and alveolitis	Muller F. et al. Lancet 2023
1.23×10 ⁶ cellskg ⁻¹ CYC 1,000 mg m ⁻² ×1 day FLU 25 mg m ⁻² ×3 days	Grade 1 CRS; no ICANS	Efficacy and safety comparable with report by Müller et al. ¹³ , but worsening of myalgia and CK elevation post CAR T cell treatment managed with MMF	Pecher A. et al. JAMA 2023
osis or idiopathic inflammato	ry myopathy		
1×10 ⁶ cells CYC 1g m ⁻² FLU 75 mg	Grade 1–2 CRS (9 of 15); Grade 1 ICANS (1 of 15)	Tolerability similar for patients with any of the conditions	Taubmann J. et Arthritis Rheum
3.5–52.5×10 ⁶ cells kg⁻¹ 2× per week–1× per month dosing No lymphodepletion	No CRS or ICANS	Clinical improvement Immunosuppressive therapy was continued and there was no clear decrease in autoantibodies or serum IgG	Granit V. et al. Lancet Neurol. 20
1×10 ⁸ cells CYC 300mg m ⁻² ×3 days FLU 30 mg m ⁻² ×3 days	No CRS or ICANS	Rapid improvement of clinical disease activity scores and reduction of acetylcholine receptor-specific autoantibodies	Haghikia A. et al Lancet Neurol. 2
1×10 ⁸ cells CYC 300 mg m ⁻² ×3 days	Grade 1 CRS (1 of 2);	Acceptable safety and CAR T cell enrichment in the CSF without neurotoxicity, with reduced intrathecal antibodies in one patient	Fischbach F. et a Med 2024
	$1 \times 10^{6} \text{ cells kg}^{-1}$ $CYC 1,000 \text{ mg m}^{-2} \times 1 \text{ day}$ $FLU 25 \text{ mg m}^{-2} \times 3 \text{ days}$ $1.23 \times 10^{6} \text{ cells kg}^{-1}$ $CYC 1,000 \text{ mg m}^{-2} \times 1 \text{ day}$ $FLU 25 \text{ mg m}^{-2} \times 3 \text{ days}$ bsis or idiopathic inflammator $1 \times 10^{6} \text{ cells}$ $CYC 1 \text{ gm}^{-2}$ $FLU 75 \text{ mg}$ $3.5-52.5 \times 10^{6} \text{ cells kg}^{-1}$ $2 \times \text{ per week-1} \times \text{ per month}$ $dosing$ $No lymphode pletion$ $1 \times 10^{8} \text{ cells}$ $CYC 300 \text{ mg m}^{-2} \times 3 \text{ days}$ $FLU 30 \text{ mg m}^{-2} \times 3 \text{ days}$	1×10^6 cells kg ⁻¹ CYC 1,000 mg m ⁻² ×1 day FLU 25 mg m ⁻² ×3 daysGrade 1 CRS; no ICANS 1.23×10^6 cells kg ⁻¹ CYC 1,000 mg m ⁻² ×1 day FLU 25 mg m ⁻² ×3 daysGrade 1 CRS; no ICANS osis or idiopathic inflammatory myopathy 1×10 ⁶ cells CYC 1g m ⁻² S CYC 1g m ⁻² FLU 75 mgGrade 1-2 CRS (9 of 15); Grade 1 ICANS (1 of 15) $3.5-52.5 \times 10^6$ cells kg ⁻¹ PLU 75 mgNo CRS or ICANS $3.5-52.5 \times 10^6$ cells kg ⁻¹ PLU 75 mgNo CRS or ICANS 1×10^8 cells CYC 300 mg m ⁻² × 3 days FLU 30 mg m ⁻² × 3 daysNo CRS or ICANS 1×10^8 cells CYC 300 mg m ⁻² × 3 daysGrade 1 CRS (1 of 2); m IOANS	1×10 ⁶ cells kg ⁻¹ Grade 1 CRS; no ICANS Positive clinical impact with disappearance of autoantibodies and dramatic resolution of myositis and alveolitis 1.23×10 ⁶ cells kg ⁻¹ Grade 1 CRS; no ICANS Efficacy and safety comparable with report by Müller et al. ¹³ , but worsening of myalgia and CK elevation post CAR T cell treatment managed with MMF 1×10 ⁶ cells Grade 1 -2 CRS (9 of 15); Grade 1 ICANS (1 of 15) Tolerability similar for patients with any of the conditions 3.5-52.5×10 ⁶ cellskg ⁻¹ No CRS or ICANS Tolerability similar for patients with any of the conditions 3.5-52.5×10 ⁶ cellskg ⁻¹ No CRS or ICANS Clinical improvement ICANS 3.5-52.5×10 ⁶ cellskg ⁻¹ No CRS or ICANS Clinical improvement ICANS 1×10 ⁶ cells Grade 1 CRS; (9 of 15); Grade 1 ICANS Clinical improvement ICANS 1×10 ⁶ cells No CRS or ICANS Clinical improvement ICANS 1×10 ⁶ cells No CRS or ICANS Rapid improvement of clinical disease activity scores and reduction of acetylcholine receptor-specific autoantibodies 1×10 ⁶ cells Grade 1 CRS (1 of 2); Acceptable safety and CAR T cell enrichment in the CSF without neurotoxicity, with reduced intrathecal antibodies

Check for updates

Anti-CD19 CAR T cell therapy for refractory systemic lupus erythematosus

Andreas Mackensen^{1,2,8}, Fabian Müller^{1,2,8}, Dimitrios Mougiakakos^{1,2,3,8}, Sebastian Böltz^{2,4}, Artur Wilhelm^{2,4}, Michael Aigner^{1,2}, Simon Völkl^{1,2}, David Simon^{2,4}, Arnd Kleyer^{2,4}, Luis Munoz^{2,4}, Sascha Kretschmann^{1,2}, Soraya Kharboutli^{1,2}, Regina Gary^{1,2}, Hannah Reimann^{1,2}, Wolf Rösler^{1,2}, Stefan Uderhardt^{2,4}, Holger Bang⁵, Martin Herrmann^{2,4}, Arif Bülent Ekici⁶, Christian Buettner⁶, Katharina Maria Habenicht⁷, Thomas H. Winkler⁷, Gerhard Krönke^{2,4,8} and Georg Schett^{2,4,8}

- After CAR-T cells:
- Reduced pro-inflammatory CKs
- Reshape of B cell compartment (immature cells)
- Normal IFN signature
- No effect on pre-existing humoral immunity

Strategies in autoimmunity

Regulatory T cells

Romano et al. Front. Imm. 2019

Treg characteristics

Forkhead box P3 (FoxP3): master regulator of Treg development

Not univocally expressed by Tregs Transiently up-regulated by Tconvs

No <u>unique</u> surface markers Combination of markers

Mostly identifyed as: CD4⁺ CD25⁺ CD127^{low}

Other markers: identification of specific subsets (e.g. CD45RA, CD49b, CD15s)

Methylation of the FoxP3 locus (TSDR): very specific Not useful for sorting live cells

Treg potential applications

 T1D, polyclonal Treg: no conclusions, hints on Treg survival (14 pt.s, Bluestone et al. 2015)
 SLE, polyclonal Treg: limited skin improvement (1 pt., Dall'Era et al. 2019)

> Acute, umbilical polyclonal Treg: reduced incidence (11 pt.s, Brunstein et al. 2016) Polyclonal Treg: reduced incidence, no standard prophylaxis (43 pt.s, Martelli et al. 2014) Chronic, polyclonal Treg: tapering of the immune suppressive regimen (5 pt.s, Theil et al. 2015)

Kidney, polyclonal Treg: no conclusions, standard medical treatment (3 pt.s, Chandran et al. 2017)
 Kidney, polyclonal Treg: no graft rejection standard medical treatment (9 pt.s, Mathew et al. 2018)

Antigen-specific Tregs

Anti-HLA.A2 CAR-Tregs

Second-generation CAR with 28z

Delay of aGvHD onset in a xenograft mouse model

STEADFAST clinical trial (ongoing)

Anti-HLA.A2 CAR-Tregs for mismatched kidney transplantation in ESRD

We aimed at developing a CAR-Treg product for the treatment of **Systemic Lupus Erythematosus**

B cells play a major role in the pathogenesis

FoxP3 - T2A - CAR19.28z (hPGK) LV

Doglio et al. Nat Comm 2024

CAR-Tregs do not kill

Treg killing capacities

Doglio et al. Nat Comm 2024

Treg instability

Tconv reprogramming

In vivo evaluation

3 groups of treatment

CAR-Tregs delay B lymphopenia

CAR-Treg count B Lymphocyte count after CAR

Doglio et al. Nat Comm 2024

CAR-Treg immunomodulation

Restored immune composition

Immune cell composition in the spleen

Conclusions

- We optimize a protocol to efficiently generate CAR-Tregs
- CAR-Tregs exert antigen-suppressive capacities without showing killing capacities
- FoxP3 over-expression reprograms Tconv to suppressive cells
- We generated a humanized mouse model of SLE
- CAR-Tregs proved safe when injected in vivo
- CAR-Tregs controled the inflammation and restore the normal composition of the human immune system in vivo

Acknowledgments

Experimental Hematology Unit

Eliana RUGGIERO Alessia Potenza Martina Spiga Chiara Balestrieri Zulma Magnani Giulia Di Lullo **Matteo Doglio** Alessia Airaghi Barbara Camisa Danilo Abbati Neda Mohammadi Clara Bercher Valeria Beretta Chiara Maffia Francesca Marzuttin Maddalena Noviello Elena Tassi Alessia Ugolini Veronica Valtolina Pierluigi Carulli Vanessa Cavallaro Susanna Cesarano Edoardo Lissoni Anna Simioni

Former members: Beatrice Cianciotti Francesco Manfredi Chiara Iozzi Giacomo Oliveira Nicolettq Cieri Attilio Bondanza Shin Kaneko

Biobanking

Cristina TRESOLDI

Gene transfer technologies and new gene therapy strategies Unit LUIGI NALDINI Stefano Beretta Martina Fiumara Samuele Ferrari Maria SQUADRITO Pathology Unit CLAUDIO DOGLIONI Luca Albarello Federica Pedica

Functional Genomics of Cancer

GIOVANNI TONON Oronzina Botrugno Giulio Giovannoni

Experimental Immunology

PAOLO DELLABONA GIULIA CASORATI Claudia De Lalla Cristina Faccani

Transplantation Immunology Unit PAOLO MONTI Arianna Ferrari Gastrointestinal Surgery RICCARDO ROSATI Ugo Elmore Hematology Unit Fabio CICERI Sara Mastaglio Matteo Carrabba M.T Lupo Stanghellini Raffaella Greco Jacopo Peccatori Massimo Bernardi Consuelo Corti and all MDs, Nurses, Data Managers

Unit Immunogenetics, Leukemia Genomics and Immunoiology Luca VAGO Cristina Toffalori Laura Zito and all

Innovative Therapy Unit

Monica CASUCCI Beatrice Greco Camilla Sirini Laura Falcone and all

Hepatobiliary Surgery

LUCA ALDRIGHETTI Guido Fiorentini Antonella Tudisco

Pancreatic Surgery

MASSIMO FALCONI Stefano Crippa

Gynecology Unit Giorgia MANGILI Alice Bergamini et al

PDL/GLP/GMP magic team Cecilia Sendresen Lucia Turchetto Marina Radrizzani Giuliana Ferrari Paola Albertini

Graziani lab U. Torino Andrea GRAZIANI

Andrea GRAZIANI Valeria Malacarne

All the collaborators

TUM Munich Hana Algül Maximilian Reichert Dirk BUSCH Elvira D'Ippolito

